TAIEX Workshop on Air Pollution Control National Programs

The implications of Air Pollution Control Programmes – example and experience of Greece (methods and results)

Petros Varelidis
Advisor of the Alternate Minister of Environment & Energy
Director of the Greek National Center of Environment & Sustainable Development

Israel, 20-21.6.2018
Air Pollution

1. Identify the problem
 – Pollutants
 – Exceedances
 – Geographical distribution
 – Sources (quantitative detailed analysis, if necessary)

2. Make the problem politically visible
 – Academia
 – Press
 – Citizens
 – Political authorities

3. Take measures
 – Interministerial cooperation
 – Enforcement

4. Monitor their effectiveness
 – Systematic accurate monitoring + modelling
Primary air pollutants:
- CO
- CO₂
- SO₂
- NO
- NO₂
- Most hydrocarbons
- Most particulates

Secondary air pollutants:
- HNO₂
- SO₃
- HNO₃
- H₂SO₄
- H₂O₂
- O₃
- PANs
- Most NO₃⁻ and SO₄²⁻ salts

Natural sources
Human sources
Creation of photochemical smog

Photochemical smog
- Nitric acid (HNO₃)
- PANs (Peroxyacyl nitrates)
- Formaldehyde and other aldehydes
- Ozone (O₃)

Reactions in the atmosphere
- Nitrogen dioxide (NO₂)
 - + Water (H₂O)
 - + O + HC
 - + O
 - + O₂
- NO + Oxygen atom (O)
- HC
- Oxygen gas (O₂) + O (in presence of HC and NOₓ)

Source of pollutants
- Nitric oxide (NO)
- Carbon dioxide (CO₂)
- Hydrocarbons (HC)
Legal framework

Air quality standards

Directive 2008/50:
- Limit Values for CO, NOx, SO\textsubscript{2}, PM10, PM2.5, Benzene, Pb
- Provision for subtracting of natural sources
- Reference methods and certification of data, sampling points

Total emissions: NEC Directive 2016/2284/EU - Emission reductions compared to 2005 for SO\textsubscript{2}, NO\textsubscript{x}, NMVOC, NH\textsubscript{3} & PM\textsubscript{2.5}
Main sources of urban air pollution

Road transport - Central heating - Industry

Other factors that can play a role:
• Urbanization
• Transfer of dust from afar
• Lack of plant cover of nearby mountains
• Aging of the car fleet
• Increase of cars (in GR, from 1,7 million cars in 1990 we reached 4,7 million cars in 2007)
• Increase of fuel consumption (e.g. because of larger vehicles)
• Climatic conditions
• Topography
Legal framework for measures

Road transport

• Euro standards:
 ➢ Regulation 715/2007 on EURO 5 & 6 – ELVs for PCs and LDVs for CO, NMHC, NOx & PM and
 ➢ Regulation 595/2009 on EURO VI for HDV
• Real driving emissions Regulation 2017/1151 (Amended by 2017/1154) with adjustments factors (1,5 by Jan. 2020)
• Regulation 2016/1628 – ELVs for non road vehicles
• Regulations 443/2009 and 510/2011 for CO$_2$ emissions from cars and vans
• ILUC Directive 2015/652 for 2nd generation biofuels: 10% biofuel, 6% reduction in GHG intensity of EU transport fuels by 2020 compared to 2010
• Directive 2014/94 on the deployment of alternative fuels infrastructure
Legal framework for measures

Industrial emissions

- Industrial Emissions Directive 2010/75
- Large Combustion Plant BREF (Decision 2017/1442/EE)
- Directive 2015/2193 on Medium Combustion Plants (1 to 50 MW) that sets ELVs for NOx, SO\(_2\) and Dust. For existing installations, if > 5 MW \rightarrow from 1/1/2025, if ≤ 5 MW from 1/1/2030. About 500 MCPs
- Directives 94/63 and 2009/126 (stage II petrol vapour recovery) for gas stations

- Draft Regulation on electricity market: Capacity mechanism - requirements regarding CO\(_2\) < 550 gr CO\(_2\)/kWh of energy or < 700 kg CO\(_2\) on average per year per installed kW
Legal framework for measures

Climate Change Mitigation
GHG: CO$_2$, CH$_4$, NO$_2$, HFCs, PFC και SF$_6$

A. Period till 2020
- 20% reduction of GHG vs 1990
 - ETS: 21% reduction vs 2005
 - Non ETS: 10% reduction vs 2005 (4% reduction for GR)
- 20% energy consumption from RES
- 20% increase of energy efficiency

B. Period till 2030
- 40% reduction of GHG vs 1990
 - ETS: 43% reduction vs 2005
 - Non ETS: 30% reduction vs 2005 (16% reduction for GR)
- 32% energy consumption from RES
- 27% increase of energy efficiency
Legal framework for measures

Fuel quality

• Fuel Quality Directive 2009/30 on biofuels
• Directive 2003/17 – sets max S content in petrol and diesel (reduction to 50mg/kg), max content for benzene and Pb in petrol and Polycyclic Aromatic Hydrocarbons in diesel.
• Directive 2016/802 – set max S content in certain liquid fuels (0,5% in the marine fuel by 2020).
• Paints Directive 2004/42 max content for VOCs in organic solvents
The case of Athens

- **Topography:** surrounded by mountains
- **Climate:** High temperature, many days of sunshine favor temperature inversions, the accumulation of pollutants and the formation of secondary pollutants.

Sea breeze from south west favors the transfer of pollution to the periphery of the Attica basin whereas north winds are strong and short and result in the dispersion of the pollutants.

70s and 80s: Smog but also SO_2 causing the ancient marbles of Acropolis turning to gypsum
Smog in Athens
National Air Quality Monitoring Network

30 automatic stations (14 in Athens), monitoring air pollution on a 24-h basis. Systematic monitoring since 1984. Calibration and certification of data in the certified lab of the ministry
Temporal variation of mean annual CO values in mg/m³
Temporal variation of mean annual SO$_2$ values in μg/m3
Temporal variation of mean annual SO_2 values in $\mu \mathrm{g}/\mathrm{m}^3$
Temporal variation of mean annual C_6H_6 values in $\mu g/m^3$
Temporal variation of mean annual NO values in $\mu g/m^3$
Temporal variation of mean annual NO values in $\mu g/m^3$
Temporal variation of mean annual NO₂ values in μg/m³
Temporal variation of mean annual NO$_2$ values in μg/m3
Geographical distribution of mean annual NO₂ values in μg/m³

circle: background station, square: road stations, rhombus: industrial station
Temporal variation of mean annual O_3 values in $\mu g/m^3$
Temporal variation of mean annual O_3 values in $\mu g/m^3$
Geographical distribution of the 26th exceedance of the LV of max daily 8-hour O_3 values in $\mu\text{g/m}^3$

circle: background station, square: road stations, rhombus: industrial station
Temporal variation of mean annual PM$_{10}$ values in $\mu g/m^3$
Temporal variation of mean annual PM$_{10}$ values in μg/m3. [Graph showing the temporal variation of annual PM$_{10}$ values from 2001 to 2017 for various locations labeled as ΘΡΑ, ΑΓ. ΠΑΡ, ΚΟΡ, ΣΜΥ, ΛΙΟ, and ΕΛΕ.]
Temporal variation of mean annual PM$_{2.5}$ values in μg/m3
Geographical distribution of mean annual PM$_{10}$ (α) and PM$_{2.5}$ (β) values in μg/m3.

circle: background station, square: road stations, rhombus: industrial station.\)
Air quality trends

- General decrease of concentrations of the primary air pollutants, such as CO, NO and SO$_2$.
- O$_3$ remains almost stable (high solar radiation and sunshine duration favour its photochemical production). Exceedance of LV is frequent during the warm period of the year in Athens.
- PM$_{10}$ violate LV for some monitoring stations. Saharan dust events are frequent throughout the year while high values of PM$_{10}$ are also present under favourable meteorological conditions some winter days due to biomass burning for heating.
- Benzene exceeds the LV in the Athens city center.
- Concentration values of SO$_2$, NO$_2$, and CO are higher at the downtown monitoring sites, while for O$_3$, typically higher values are observed at the suburban sites. Topography combined with southwestern sea breeze in Athens often result in O$_3$ accumulation in the northern and north-eastern suburbs, especially during the summertime afternoon hours.
- NO$_2$ exceedances of the annual LV are observed mainly at the periphery of in Athens.
- SO$_2$ and CO concentrations during the winter period are higher than those during summer period. Max CO values coincide with traffic peaks. These pollutants never exceed LV.
- Heavy metals like As, Cd, Ni, Pb are below LAT.
Assessment of atmospheric pollution of the country using numerical models
SO₂: Exceedances of hourly limit values (350 μg/m³)
NO$_2$: Mean annual value (40 µg/m3)
NOx: Mean annual value in Athens from all sources

NO2: Annual mean value

Model results (CAMx)
Grid size: 2km x 2km

Legend
- Monitoring network

NO2 (µg/m3)
- NO2 < LAT
- LAT < NO2 < UAT
- UAT < NO2 < LV
- NO2 > LV
- Agglomeration EL0003

LAT: 26 µg/m3
UAT: 32 µg/m3
LV: 40 µg/m3
NOx: Mean annual value in Athens from road sources
O₃: Exceedances of max daily 8-hour mean (from hourly running 8 hours) (LV: 120 µg/m³) - 3 years average
PM$_{10}$: Daily values - exceedances of limit value (50 µg/m3)
PM$_{10}$: Mean annual value (40 μg/m3)
PM$_{2.5}$: Mean annual value (25 mg/m3)
CO: Exceedances of max daily 8-hour mean LV (from hourly running 8 hours) (LV: 10 mg/m³) - 3 years average
Benzene: Mean annual average (5 μg/m³)
Population exposure to air pollution above LVs (2016)

\[\text{O}_3: 55\% \]
\[\text{NO}_2: 2\% \text{ (annual LV)} \]
\[\text{PM}_{10}: 21\% \text{ (daily LV)} \]

Benzene: 2\% (annual LV)
No exposure to \text{PM}_{2.5} \text{ (annual LV)} and \text{SO}_2 \text{ (daily LV)}
Main sources of Athens air pollution

Road transport
- CO: 90% caused by road transport
- NO$_2$: 80% caused by road transport
- O$_3$: 80% caused by road transport
- Benzene: 90% caused by road transport
- PM: 40-80%, depending on the area

Other PM sources: central heating, road dust and industry

SO$_2$: Industry and central heating
Initial measures for SO$_2$ and smog

First measures taken at late 70s and early 80s - aim at reducing SO$_2$ and traffic (reducing air emissions as a collateral benefit):

- Ban heavy fuel oil in central heating in 1977
- Close down of a heavy fuel oil power plant located in Piraeus and of another one at cape Sounio, 45 km from Athens
- Improving traffic conditions through synchronization of traffic lights, construction of bridges, inner ring during the week days (odd-even systems - 1979) etc.
- Planting trees at the curbside! (wherever there is an open space)
- Prohibition in circulation of diesel PCs since the 1980s in Athens and Thessaloniki.
- Measures to force the relocation of all industries out of the city – they become the enemy (social-political aspect)
- Closure of some other factories for economic reasons
Ongoing measures in the last decades

1. Heating:
 • Allowing only 0.1% S content in diesel - mandatory use of natural gas downtown where available –
 • Economic incentives to promote natural gas
 • Economic incentives to use of electricity instead of biomass during high pollution days
 • Money allowance for purchase of heating oil according to the personal income
 • Standards for solid biomass fuels

1. Industry:
 • Still measures to discourage the installation or the expansion of factories in Athens mainly through land use restrictions!!!
 • Promotion of natural gas
 • Improved environmental inspections
Ongoing measures in the last decades

3. Road transport:
 • Economic incentives to withdraw the old conventional PCs and to replace them with catalytic-converter cars in the early 1990s. Also valid in 2010-2014 to renew the fleet.
 • Green Ring in Athens
 • Circulation fees are based on the emissions in CO₂
 • Construction of extended road network bypassing the city centers and increasing the mean speed.
 • Improvement of the technical inspection system for cars
 • Improvement of fuel quality controls
 • Construction of metro (2000, 2 new lines about 50 km, 1,4 million people daily), tram (3 lines – 2004, 25,9 km) and suburban railway and continuous expansion.
 • Improvement of the level of service of public bus transportation – bus lanes
 • Renewal of public buses (60% diesel, 25% natural gas, 15% trolleys)

4. Warning system: Inform and advise the population if pollution is above a certain threshold and take extraordinary measures if above highest threshold
The measure of car withdrawal

Critical factors/parameters to fine tune the right measures and measure its effectiveness: type of vehicles, age of fleet, maintenance, km/vehicle

Expected reductions (%) in emissions in 2011 compared to 2010, 75,000 cars

<table>
<thead>
<tr>
<th>YEAR</th>
<th>PM</th>
<th>NOx</th>
<th>NMVOC</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>0</td>
<td>-2</td>
<td>-4</td>
<td>-4</td>
</tr>
</tbody>
</table>

Problem: all imported
Air emissions from road transport in Athens

Parameters:
- Type of vehicle (PCs, taxis, LDVs, trucks and buses, motorcycles)
- Age distribution
- Number of km per type of vehicle
- Speed profile
- Ambien temperature

COPERT IV

<table>
<thead>
<tr>
<th>t/y</th>
<th>CO</th>
<th>NMVOCs</th>
<th>NOX</th>
<th>PM</th>
<th>CO2 (kt/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCs</td>
<td>75639</td>
<td>11347</td>
<td>8665</td>
<td>Private 36</td>
<td>4706</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Taxis 59</td>
<td></td>
</tr>
<tr>
<td>LDVs</td>
<td>15571</td>
<td>1926</td>
<td>2212</td>
<td>57</td>
<td>518</td>
</tr>
<tr>
<td>HDVs</td>
<td>3990</td>
<td>1775</td>
<td>13517</td>
<td>613</td>
<td>1176</td>
</tr>
<tr>
<td>Buses</td>
<td>939</td>
<td>277</td>
<td>4065</td>
<td>123</td>
<td>417</td>
</tr>
<tr>
<td>2-Wheel Vehicles</td>
<td>31425</td>
<td>3520</td>
<td>864</td>
<td>48</td>
<td>313</td>
</tr>
<tr>
<td>TOTAL</td>
<td>127563</td>
<td>18845</td>
<td>29322</td>
<td>936</td>
<td>7131</td>
</tr>
</tbody>
</table>

Annual air emissions per vehicle type in Athens
Green ring in Athens (proposal by Chemical Engineering School of NTUA)

- Banning passenger cars > 22 years from the inner ring
- PCs with registration number ending in an odd number (1, 3, ...) are only allowed in the inner ring (downtown) on odd dates while those cars with registration number ending in an even number (0, 2, ...) are allowed on even dates (from 07:00 to 20:00 every weekday or 15:00 on Friday).
- The following vehicles are allowed in the inner ring independently of their license plate:
 - Electrical PC
 - Euro 4 hybrid PCs that emit < 140g CO₂/km
 - Euro 5 and 6 PCs that emit < 140g CO₂/km
- Heavy vehicles (trucks and buses) > 22 (15) years are not allowed in the outer ring – exemptions in 3 main highways
- Green badge on the car
- No restrictions in the weekends
Green ring in Athens Emission estimates

NTUA proposal of banning PC > 22 year

Estimated emission reductions in the Athens Greater Area in a typical day from road transport

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>NMVOC</th>
<th>NOₓ</th>
<th>N₂O</th>
<th>CH₄</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-54%</td>
<td>-45%</td>
<td>-13%</td>
<td>-10%</td>
<td>-28%</td>
<td>-10%</td>
</tr>
</tbody>
</table>

Allowing EURO 5 & 6 diesel PC in Athens

Emission reductions in 2015 vs 2010 (including car withdrawal)

<table>
<thead>
<tr>
<th></th>
<th>PM</th>
<th>NOₓ</th>
<th>NMVOC</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>No diesel</td>
<td>-2%</td>
<td>-10%</td>
<td>-31%</td>
<td>-29%</td>
<td>3%</td>
</tr>
<tr>
<td>With diesel</td>
<td>1%</td>
<td>-7%</td>
<td>-32%</td>
<td>-32%</td>
<td>-5%</td>
</tr>
</tbody>
</table>
Green ring in Athens – Emission estimates

Banning buses and trucks > 15 years in the outer ring

Estimated emission reductions in Greater Athens Area from road transport in a typical day

<table>
<thead>
<tr>
<th>Age of HDV in the outer ring</th>
<th>PM$_{10}$</th>
<th>NMVOC</th>
<th>NO$_X$</th>
<th>N$_2$O</th>
<th>CH$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 15 year</td>
<td>-66%</td>
<td>-71%</td>
<td>-44%</td>
<td>-7%</td>
<td>-52%</td>
</tr>
<tr>
<td>< 22 year</td>
<td>-40%</td>
<td>-13%</td>
<td>-20%</td>
<td></td>
<td>-6%</td>
</tr>
</tbody>
</table>
NEC Directive

Emission reductions compared to 2005 for \(\text{SO}_2 \), \(\text{NO}_x \), NMVOC, \(\text{NH}_3 \) & \(\text{PM}_{2.5} \)

<table>
<thead>
<tr>
<th></th>
<th>2016 (existing situation)</th>
<th>2020-2029</th>
<th>➢ 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction (\text{SO}_2)</td>
<td>86.98%</td>
<td>74%</td>
<td>88%</td>
</tr>
<tr>
<td>Reduction (\text{NO}_x)</td>
<td>44.74%</td>
<td>31%</td>
<td>55%</td>
</tr>
<tr>
<td>Reduction NMVOC</td>
<td>33.38%</td>
<td>54%</td>
<td>62%</td>
</tr>
<tr>
<td>Reduction (\text{NH}_3)</td>
<td>12.62%</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>Reduction (\text{PM}_{2.5})</td>
<td>45.62%</td>
<td>35%</td>
<td>50%</td>
</tr>
</tbody>
</table>

- National program of measures – interministerial committee
- National Committee for Energy and Climate
NEC Directive – Existing measures

EU Climate – Energy package for 2020 and 2030
- ETS & non ETS (Effort Sharing Decision)
- ILUC Directive
- Renewables
- Energy Efficiency
- Ecodesign provisions on solid fuel combustion
- etc...

EU transport legislation
- Regulations CO2 emissions from cars and vans
- Euro standards
- Non road mobile machinery Regulation
- Alternative fuel infrastructure Directive

Industry
- IED & MCP Directives

Other
- Nitrates Directive,
- CAP
- etc.
NEC Directive – Overall picture

The graph shows the national emissions of various pollutants as a percentage of 1990 levels from 1990 to 2015. The pollutants include SO$_x$, NO$_x$, NMVOC, NH$_3$, PM$_{10}$, PM$_{2.5}$, CO, and BC. The emissions generally show a declining trend over the years.
NOx

Sources
• Power plants - 30%
• HDV road transport – 18%
• Rest road transport – 8%
• Shipping – 17%
• Industry – 7%

Policy measures:
• RES
• Promotion of natural gas
• Interconnection of the islands
• Withdrawal of old power plants
• Renewal of HDW fleet
• Directives 2015/2193/EU (MCP), 2010/75/EU (LCP ELV), 2017/1442/EU (LCP BAT)
NOx

Emissions 2016: -33.21% compared to 1990
-44.74% compared to 2005
Only emissions sectors that are accounted for the NEC Directive are included.
Sources
• Power plants - 69%
• Petroleum refinery – 14%

Policy measures:
• Reduction of fuel S content
• Desulphulization in power plants
• RES
• Promotion of natural gas
• Interconnection of the islands
• Withdrawal of old power plants
Emissions 2016: -85.21% compared to 1990
-86.98% compared to 2005
SO2
Sources
• Manure - 66%
• Fertilizers – 16%

Policy measures:
• Reduction of use of fertilizers
• Organic farming
• Manure management
• CAP – green payments
• Code of Good Agricultural Practice for the reduction of nitrate pollution of groundwaters
Emissions 2016: -26.55% compared to 1990
-12.62% compared to 2005
Sources
• Households (central heating) – 35%
• Industry – 10%
• Shipping – 8%
• Power plants - 7%
• HDV road transport – 6%

Policy measures:
• RES
• Promotion of natural gas
• Interconnection of the islands
• Withdrawal of old power plants
• Renewal of HDW fleet
• Directives 2015/2193/EU (MCP), 2010/75/EU (LCP ELV), 2017/1442/EU (LCP BAT)
PM$_{2.5}$

Emissions 2016: - 41.28% compared to 1990
- 45.62% compared to 2005
NMVOC

Sources
• Use of organic solvents - pigments – 45%
• Road transport – 24%

Policy measures:
• Implementation of Directive 1999/13 (reduction of VOC emissions resulting from the use of organic solvents)
• Implementation of Directive 2004/42 (max concentration of VOC in pigments)
• Renewal of vehicle fleet
Emissions 2016: - 38,18% compared to 1990
- 33,38% compared to 2005
Contribution of each organic solvents on NMVOC emissions
Contribution of product groups and processes on NMVOC emissions due to the use of chemical products

The chart illustrates the contribution of various product groups and processes on NMVOC emissions from 1990 to 2016. The emissions are measured in kilotons (kt). The product groups include:

- Polyurethane, polysterene, polyvinylchloride
- Textile finishing
- Glues and adhesives
- Paints
- Ink
- Others
- Asphalt blowing

The chart shows a trend of increasing NMVOC emissions over the years, with peaks in certain years indicating significant contributions from specific product groups or processes.
Contribution of food and beverage on NMVOC emissions

- Wine, beer, and spirits
- Animal food
- Sugar and coffee
- Fish and poultry
- Bread and biscuits
- Fats
Non Methane Volatile Organic Compounds (NMVOC)

Only emissions from sectors that are included in the NEC Directive
Pb emissions by sector (in kt) for the years 1990 – 2016
Projections

Air emissions till 2040 (all sources included)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2017 Emission Inventory</th>
<th>Projections WM scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>440.29</td>
<td>250.03</td>
</tr>
<tr>
<td>NMVOC</td>
<td>305.93</td>
<td>187.81</td>
</tr>
<tr>
<td>SOx</td>
<td>570.44</td>
<td>89.16</td>
</tr>
<tr>
<td>NH₃</td>
<td>65.09</td>
<td>60.27</td>
</tr>
<tr>
<td>PM2.5</td>
<td>57.58</td>
<td>35.90</td>
</tr>
<tr>
<td>BC</td>
<td>8.40</td>
<td>6.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2017 Emission Inventory</th>
<th>Projections WM scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>419.16</td>
<td>230.89</td>
</tr>
<tr>
<td>NMVOC</td>
<td>295.74</td>
<td>175.27</td>
</tr>
<tr>
<td>SOx</td>
<td>570.44</td>
<td>89.16</td>
</tr>
<tr>
<td>NH₃</td>
<td>65.09</td>
<td>60.27</td>
</tr>
<tr>
<td>PM2.5</td>
<td>57.58</td>
<td>35.90</td>
</tr>
<tr>
<td>BC</td>
<td>8.40</td>
<td>6.48</td>
</tr>
</tbody>
</table>

Air emissions till 2040 (all sources included)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2017 Emission Inventory</th>
<th>Projections WM scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>440.29</td>
<td>250.03</td>
</tr>
<tr>
<td>NMVOC</td>
<td>305.93</td>
<td>187.81</td>
</tr>
<tr>
<td>SOx</td>
<td>570.44</td>
<td>89.16</td>
</tr>
<tr>
<td>NH₃</td>
<td>65.09</td>
<td>60.27</td>
</tr>
<tr>
<td>PM2.5</td>
<td>57.58</td>
<td>35.90</td>
</tr>
<tr>
<td>BC</td>
<td>8.40</td>
<td>6.48</td>
</tr>
</tbody>
</table>

Air emissions till 2040 (all sources included)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>2017 Emission Inventory</th>
<th>Projections WM scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>419.16</td>
<td>230.89</td>
</tr>
<tr>
<td>NMVOC</td>
<td>295.74</td>
<td>175.27</td>
</tr>
<tr>
<td>SOx</td>
<td>570.44</td>
<td>89.16</td>
</tr>
<tr>
<td>NH₃</td>
<td>65.09</td>
<td>60.27</td>
</tr>
<tr>
<td>PM2.5</td>
<td>57.58</td>
<td>35.90</td>
</tr>
<tr>
<td>BC</td>
<td>8.40</td>
<td>6.48</td>
</tr>
</tbody>
</table>